Astro-E2 講習会 2004/07/03 立教大学、2004/07/10 京都大学

Astro-E2 XRS 石崎 欣尚 (東京都立大), 山崎 典子 (ISAS/JAXA), XRS team

キャリブレーションの不定性

エネルギースケール ライン幅 有効面積 (XRT+XRS) 時刻付け精度 相対時間差精度 10 µs

Requirement	Goal
2 eV	1 eV
1 eV	1 eV
10 %	5 %
300 µ s	100 µs
80 µ s	

Technical Description Table 2.2

これにポアソン統計による誤差を合わせた ものが実際の決定精度

同ーピクセルでの前後の イベントとの時間差により、 H, Mp, Ms, Lp, Ls の5種類 に分類 (p: primary, s:

secondary)ついては、分解 能はほとんど変わらないが、 それ以外についてはやや劣

1. Open	
2. Open	⁵⁵ Fe & ⁴¹ Ca default during Earth occultation
3. Be 300µm	
4. Be 300µm	⁵⁵ Fe
5. ND 10%	
6. ND 10%	⁵⁵ Fe

Technical Description Table 6.1 XRS でユーザーが指定 すべき唯一のパラメータ

検出器バックグランド

- crosstalk (electrical & thermal)
- cosmic rays interacting in pixel
- cosmic rays interacting with frame (small pulses in multiple pixels)

検出器直下の赤枠位置に Anti-Coincidence 検出器 (Si PIN 500 µm 厚)を装備

Crosstalk 除去ツールイベントにフラグづけ(xrscrosstalk) で除去可能(FLAG_ANTICO)予想される検出器バックグランド ~ 数 count/pixel/day
Stahle, C.K. et al (2004) NIM-A 520, p472

軌道上寿命 約 2.5 年(機械式冷凍機の運転状況による)

ADR のリサイクル ~1日に 1回、1時間程度

フィルタホイールの駆動 観測ターゲットの地没ごと (CAL ソース位置の未使用時)

CAL ピクセルによるゲインモニタ 温度モニタ(ACHE)、ノイズモニタ(CDP) 常時

xrssim (Linux/MacOSX/Tru64/Solaris) をリリース予定

対応していること

- 広がった天体の観測シミュレーション
- イベントフラグの判定
- ピクセルごとのカウント数の見積もり

バックグランドクロストーク、ソースの地没判定などは未対応

地上較正データの例(1)

Astro-E2

地上較正データの例(2)

Line Spread Function of MnKa

Energy resolution dependence on Photon Energy

地上較正データの例(5)

Hg-L edge strength using a continuum x-ray source

