Suzaku First Results on Galactic Compact Objects

Manabu ISHIDA (ISAS/JAXA) and the Suzaku team

Large Effective Area of XRT+XIS

XIS EA in total is comparable with that of XMM.

For more detail about XRT, see the poster 18.13 Mori et al. 3

Unique Features of XIS

- Sharper line spread function, especially below ~2keV.
- Low & stable background, owing to a near-earth orbit (h ≈550km).
- Needless to care about pileup and telemetry saturation up to
- ~ 60 mCrab (with Window option)
- ~ 0.5 Crab (with Burst option)
- Time resolution
- Nominally 8 sec.
- At most 8 msec in timing mode.

For more detail about XIS, see the poster 18.24 Tsuru et al. 4

Low HXD background

Background normalized by effective area

- Presently background is reproduced with accuracy of 5% both for PIN and GSO. For more detail about HXD, see
- Our goal is 2%.

Blackhole Candidate

- Wide energy coverage over three orders of magnitude.
- Coordinated observation is not necessary.
- High spectral resolution below 10keV.
- High sensitivity above 10keV.

Turnover: *kT* ≈110keV

Cyclotron Absorption: A0535+262

- Observation was carried out on ^{5×10²} 2005 Sep. 14, close to the end of a flare.
- Detection of cyclotron absorption line at

$$E_a = 45.5 \pm 1.3 \text{keV}$$

for the first time at a low luminosity level $\approx 4 \times 10^{35}$ erg s⁻¹.

- The E_a drift did not occur in the luminosity range over ~2 orders of magnitude.
- Possible correlation between E_a transition and L_x .

Terada et al. (2006) ApJL 648, L139

4U1630-472

- H/He-like Fe Ka absorption lines.
- Blue shift: $v/c \approx 3 \times 10^{-3}$
- Abs. stable for ~2 months
 Disk wind
 - ₽ Jet
- Absorption line intensity ratio

$$\Rightarrow \xi \approx (5-6) \times 10^4 = L_{\rm X}/n_0 r_0^2$$

⇒ H+He-like fraction ≈ 25%

$$\rightarrow N_{H} \approx 1 \times 10^{23} \text{cm}^{-2} = n_0 r_0$$

(Fe/H = 3.3 ×10⁻⁵)

• Disk wind occurs at $r_0 \approx (3-4) \times 10^{10} \text{cm}$ with $n_0 \approx 5 \times 10^{12} \text{cm}^{-3}$

$$\dot{M}_{\rm wind} \sim 0.3 \dot{M}_{\rm acc}$$

6-9keV Spectra

Kubota et al.; to appear in the PASJ Suzaku spetial issue (2006)₈

SS Cyg: 6.4keV Iron Kα Line

- Quiescence: Narrow (WD) + Broad (Accretion Disc)
 - → $R_{\rm BL} < 1.15 R_{\rm WD}$
- Outburst: Broad dominant
- $E_{\text{Fe}} = 6.54 \pm 0.02 \text{keV}$, $\sigma = 0.202 \pm 0.015 \text{keV}$, $EW \sim 320 \text{eV}$ $v \approx 9300 \text{km/s}$!! ($v_{\text{ff}} = 8800 \text{km/s}$ for $1.19 M_{\odot}$ WD) Really fluorescent? Need to consider other possibilities...

cf. 3.03 K. Mukai for Suzaku CV observations

Summary:

Suzaku advantages in observing galactic compact objects are:

- ◆ Wide-band spectroscopy (0.2-700 keV) in one observatory.
- ◆ Low and stable background over a very wide X-ray band.
- ◆ Good energy resolution with a sharp line spread function, in particular < 2keV.
- Small pile-up, large telemetry capacity.

Suzaku CD-ROM for Free distribution

CD-ROM Initial Results from Suzaku

- Initial Publications
- Conference Presentations
- Launch Videos

Suzaku AO-2

- Suzaku AO-2 is now open.
- Deadline for proposal submission is 2006 December 1.
- Instrument status is reported in the posters on Saturday:
 - * 18.13 XRT by Mori et al.
 - * 18.24 XIS by Tsuru et al.
 - ✓ Recovery of the energy resolution with spaced-row CI.
 - ✓ Baking of OBF for recovery of detection efficiency below ~1keV.
 - * 18.29 HXD by Kokubun et al.
- Please visit Suzaku GOF homepage (NASA/GSFC) at:
 - * http://heasarc.gsfc.nasa.gov/docs/suzaku/astroegof.html
 for full detail about the AO-2.

Spaced-row Charge Injection for XIS

■ History of energy resolution of XIS2 for ⁵⁵Fe calibration source (in a unit of eV).