Fabrication, alignment, and integration of glass mirrors

Will Zhang

X-ray Astrophysics Laboratory NASA Goddard Space Flight Center

Will Zhang

High Energy Astrophysics in the Next Decade

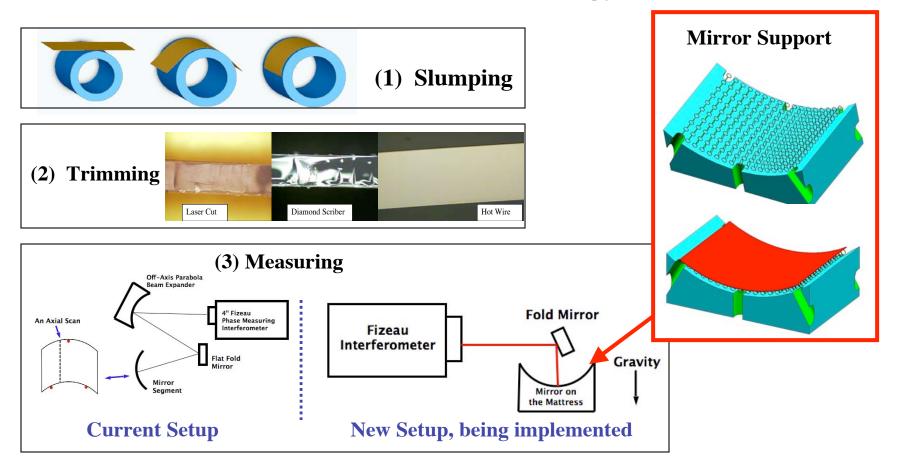
Tokyo

23 June 2006

Acknowledgements

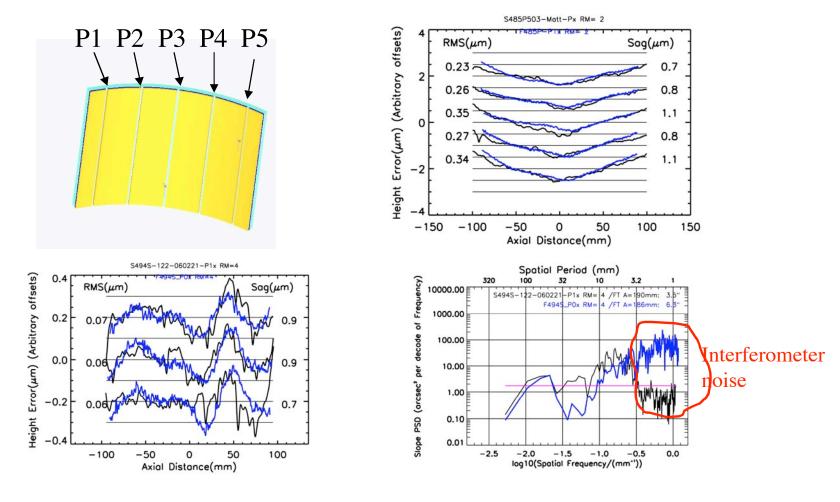
GSFC:	MSFC:	Technology Development Manager:
Kai-Wing Chan	Bill Jones	Scott Owens
David Content	Mikhail Gubarev	Laboratory Manager:
John Lehan	Steve O'Dell	Curtis Odell
Rob Petre	SAO:	Technical Support:
Timo Saha	Paul Reid	James Mazzarella Marton Sharpe
Will Zhang		Melinda Hong Theo Hadjimichael

This work has been supported in part by


The Constellation-X Project Office GSFC Core Competence Fund A NASA Astronomy and Physics Analysis Grant GSFC Internal R&D Fund GSFC Technical Equipment Fund GSFC Director's Discretionary Fund

Four Questions and Answers

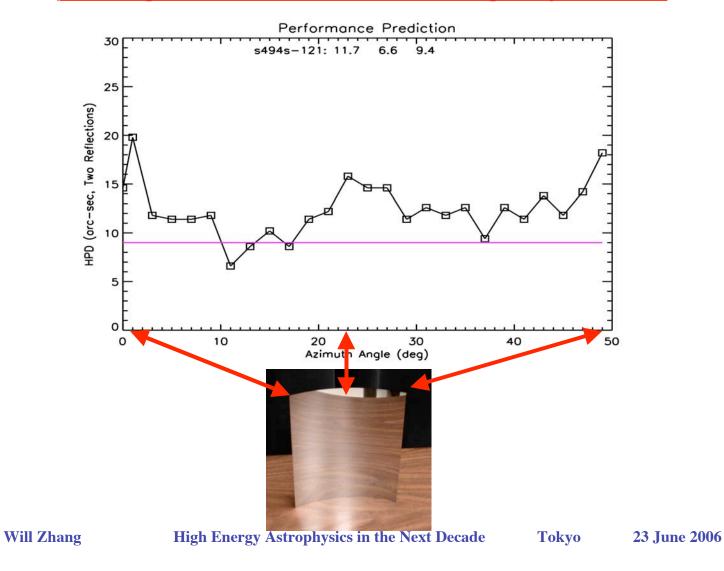
(for a given set of requirements: mass, angular resolution, schedule, and budget)


- Can we make the mirror segments?
 - Developed a precision glass forming technology
 - Invented a glass cutting technique that leaves fracture-free edges
- Can we measure them, overcoming gravity and handling distortions?
 - Using Fizeau phase-measuring interferometers
 - Designed and fabricated a cylindrical null lens system
 - Invented a mirror support (aka a mattress) to reduce/cancel gravity distortion
- Can we align and integrate many (hundreds to thousands) of them into mirror assemblies?
 - Implementing a "Fabricate and Assemble" approach
- Can these assemblies survive the launch and space environment: acoustical, vibrational, and thermal
 - A mechanical mock-up structure is being made, will be tested in acoustic and vibration chambers

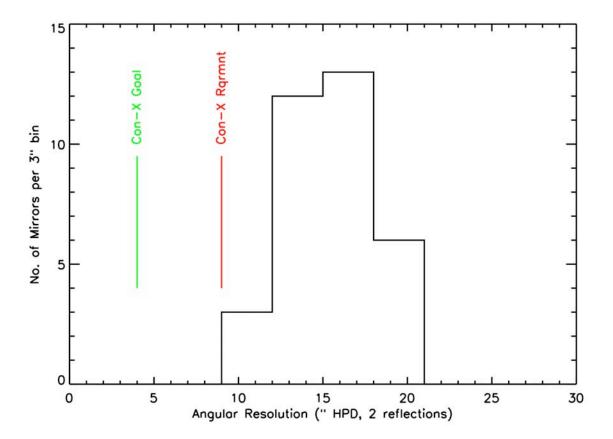
Mirror Fabrication and Metrology Process

High Energy Astrophysics in the Next Decade Tokyo

Typical Mirror Quality

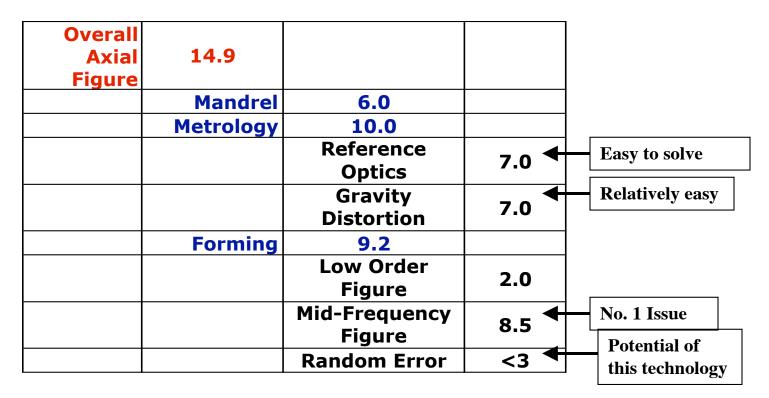

High Energy Astrophysics in the Next Decade

Tokyo

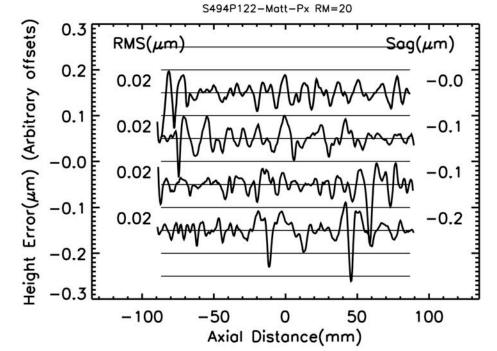

<u>Apparent</u> Performance of a Typical Mirror Segment

(including both mirror intrinsic error and gravity distortion)

Distribution of <u>Apparent</u> Mirror Quality


(all mirrors produced between Jan and Apr 2006)

High Energy Astrophysics in the Next DecadeTokyo23 June 2006


Error Decomposition

Features of Glass Forming

- It is a totally deterministic process, having very little random error
- It preserves the glass sheet's thickness
- It preserves the glass surface micro-roughness
- It is an isotropic process, namely the surface error is the same in the axial direction and the circumferential direction
- It duplicates the low order figure of the forming mandrel with a very high degree of fidelity: spatial scale > 20 mm
- But it introduces additional mid-frequency errors: spatial scale between 2 and 20 mm; These errors currently dominate the mirror X-ray performance

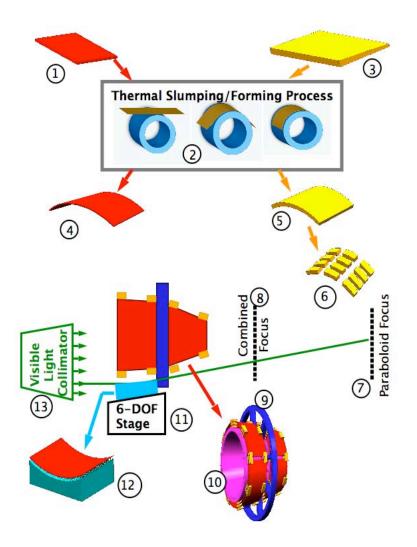
Meet the mid-frequency error face-to-face

Features: very small amplitudes (P-V less than 100nm) but fairly large slopes because of short spatial periods

Cause, reduction and/or elimination of the mid-frequency errors?

• Cause:

- Dust: particles in the ambience trapped/sandwiched between the glass sheet and the forming mandrel surface
- Detritus: particles shed by the release layer


Reduction/Elimination

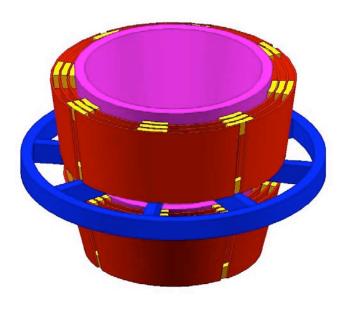
- Improving the environment and the release layer
- Epoxy replication
- Light polishing/buffing

Existing/Proposed Mirror Alignment/Integration Methods

- Electric-Discharge machined (Wire-EDM) aluminum combs (Serlemistsos et al. 1989): BBXRT, ASCA, Suzaku, InFocus
- Plasma-etched precision silicon combs (Shattenburg et al. 2000): proposed for Con-X
- In-Situ precision machined graphite spacers (Craig et al. 1998): HEFT
- "Actuate and Affix" (Hair et al. 2002; Owens et al. 2006): being studied for Con-X
- Micro-Pore Optics (Beijrsbergen et al. 2004): XEUS optics
- "Fabricate and Assemble" (Zhang et al. 2006)

The Whole Process on One Page

- 1. Glass sheet
- 2. Slumping process
- 3. Wedged sheet
- 4. Mirror segment
- 5. Slumped wedged spacer sheet
- 6. Finished spacers
- 7. Optical CCD (focus of the primary mirror segments)
- 8. Optical CCD (focus of the telescope)
- 9. Wagon wheel (blue)
- **10.** Alignment core (purple)
- 11. 6-DOF stage
- 12. Mirror segment cradle/mattress
- **13.** Optical collimator
- 14. Spindle (not shown)
- **15.** Epoxy and its application and cure (not shown)
- 16. Precision radius gauge (not shown)


Will Zhang

High Energy Astrophysics in the Next Decade

Features of "Fabricate and Assemble"

- No stack-up error: each mirror segment is integrated with its own specific spacers
- Each mirror segment is treated exactly the same as every other mirror: <u>if you can align/integrate one mirror, you can align/integrate all of them</u>
- Each component of the entire system is separately fabricated and measured: we cut no "corners"
- Each mirror segment is integrated in its "gravity-free" using the support mattress
- Each mirror segment is integrated into the assembly stress-free: no surprise at the completion of assembly when any residual stress could cause potentially devastating system level distortions
- Each mirror segment performs double duty: (1) serving as an optical element, and (2) serving as part of the mechanical structure
- Built-in redundancy to prevent inadvertent mistakes

Mirror assembly for NeXT

- Focal length: 12m
- ID: 120mm; OD: 450mm
- No. of Shells: 140
- Mirror segment:
 - 200mm in axial length
 - 90° in azimuth
 - 0.3mm thick
- Total mass: <50kg
 - Mirror segments: <40kg
 - Spacers: <3kg
 - Wagon Wheel: <3kg

Practical Considerations

- **Optical design:** conical approximation, contributing **5** arc-sec HPD
- Forming mandrels: either conical or cylindrical with axial figure error contributing less than 8 arc-sec HPD
- Major error contributors:
 - Glass forming: < 20 arc-sec HPD
 - Alignment/integration error: < 10 arc-sec HPD</p>

Expected mirror assembly performance: 25 arc-sec HPD

Summary

- Directly slumped glass mirrors are close to meeting Con-X requirements. Once *metrology and mid-frequency problems* are solved, they should be as good as the mandrels, close to reaching the Con-X goal of 5 arc-sec HPD.
- The "Fabricate and Assemble" is being studied as an integration method for making both large (Con-X) and small (NeXT) assemblies.
- Given schedule and budgetary considerations of a mission like NeXT/MIDEX
 - 30 arc-sec HPD for a NeXT mirror is straightforward and relatively easy to implement
 - 10-20 arc-sec HPD is likely doable, but with care and a little more development
- We are in the process of making a prototype for X-ray test and for vibration and acoustic tests