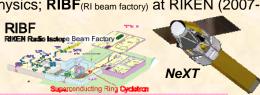
# New world of Nuclear Gamma-ray Astrophysics opened with near future X-ray missions

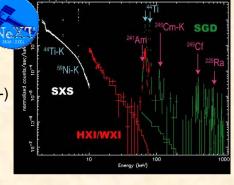
Y.Terada, T.Tamagawa, Y.Motizuki, A.Bamba, J.S.Hiraga, K.Makishima(RIKEN), T.Takahashi, K.Nakazawa, Y.Uchiyama (ISAS/JAXA), S.Tashiro (Saitama), H.Takahashi, Y.Fuakazawa(Hiroshima), and K.Yamaoka (Aoyama) nuclear\_astrophys@crab.riken.jp

#### abstract

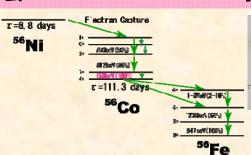
New eyes in the hard X-ray to soft gamma-ray band with extremely high sensitivities and energy resolution in future missions, including NeXT satellite, will lead us to a new world of nuclear astrophysics; from elements to nuclear species, and from stable nucleus to unstable ones. One exciting topic is to search for an evidence of the "r-process" nucleosynthesis in the universe. The r-process is the only one process to explain nucleosynthesis of heavier elements than Bi. It occurs only in a explosive neutron-rich environment, like a final stage of supernovae. It is feasible to find some evidence from young supernova remnants by high sensitive search on gamma-ray line emissions from unstable nuclear species produced only by r-process with SGD and HXI on-board NeXT satellite. In this presentation, we will introduce topics on nuclear astrophysics (r-process, <sup>56</sup>Ni lines from type Ia supernova, <sup>44</sup>Ti lines from gravitationally collapsed supernova, etc..), which must be important subjects in the next decade with future missions.

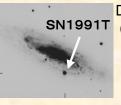
| Isotope          | Life time                | Decay chain                                              | γ-ray Energy (keV)          |
|------------------|--------------------------|----------------------------------------------------------|-----------------------------|
| <sup>7</sup> Be  | 77 d                     | <sup>7</sup> Be → <sup>7</sup> Li*                       | 478                         |
| <sup>56</sup> Ni | 8.8 d                    | <sup>56</sup> Ni→ <sup>56</sup> Co*→ <sup>56</sup> Fe+e+ | 158, 812; 847, 1238         |
| <sup>57</sup> Ni | 390 d                    | <sup>57</sup> Co→ <sup>57</sup> Fe*                      | 122                         |
| <sup>22</sup> Na | 3.8 yr                   | <sup>22</sup> Na→ <sup>22</sup> Ne*+e+                   | 1275                        |
| 44Ti             | 89 yr                    | <sup>44</sup> Ti→ <sup>44</sup> Sc*→ <sup>44</sup> Ca+e+ | 78, 68; 1 <mark>15</mark> 7 |
| <sup>26</sup> AI | 1.0 × 10 <sup>6</sup> yr | <sup>26</sup> Al→ <sup>26</sup> Mg*+e+                   | 1809                        |
| <sup>60</sup> Fe | 2.0 × 10 <sup>6</sup> yr | <sup>60</sup> Fe→ <sup>60</sup> Co*→ <sup>60</sup> Ni*   | 59, 1173, 1332              |
| e+               | ~10⁵ yr                  | e++e-→Ps→γγ                                              | 511, <511                   |


Table.1 Isotopes in the universe →


## Where is the r-process site?

Nucleosysthesis of heavier elements than Bi; Where? How?

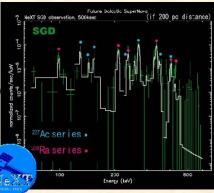

Y.Motizuki et.al in prep


•NeXT has high sensitivity to search  $\gamma$  -ray lines from r-processed unstable nucleons. (left) Good collaboration with ground experiments of nuclear physics; RIBF(RI beam factory) at RIKEN (2007--)

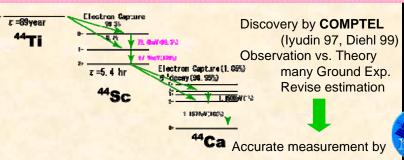


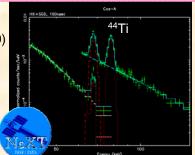


# 2. What occurs in type Ia Super Novae?







Discovery by COMPTEL (2 events par 9 years;


SN1991T@13Mpc, SN1998bu@11Mpc)

**NeXT** can detect SN Ia from Virgo Cluster (a few events par year)



## 3. Direct probe to Gravitational Collapses in SN





#### Reference:

R.Diehl and F.X.Timmes 1998, PASP 110, 637 J.Vink et.al. 2001, ApJ 560, L79 C.Dupraz et.al. 1997, A&A 324, 683 A.F.Iyudin 1994, A&A 284, L1 K.W.Chan and R.E. Lingenfelter 1991,ApJ 368,515 Qian et.al. 1999, ApJ 524, 213 Mochizuki et al. 1999, A&A 346, 831 NeXT WG 2003, NeXT proposa NeXT WG 2005, NeXT proposa Y.Motizuki et.al, in prep

E-mail: terada@riken.jp nuclear\_astrophys@crab.riken.jp