Study of Galactic Diffuse Sources with Suzaku

Tadayuki Takahashi ISAS/JAXA

and the Suzaku team

From Supernova Remnants to Galactic Center Region

See also Talk by H.Tsunemi (35.07) and R. Petre (59.04)

Supernova Remnants as the site of Cosmic-ray Acceleration

- ASCA discoveries of X-ray synchrotron emission from SN1006 (Koyama et al. 1995) $hv_{\text{synch}} = 5.3 E_{100\text{TeV}}^2 B_{10\mu\text{G}}$ [keV]
 - \rightarrow Existence of

high energy electrons with energy up to 10 - 100 TeV.

$$\begin{bmatrix} \text{Maximum Energy } (t_{acc} = t_{age}) \end{bmatrix} \\ E_{max} = \frac{3}{20} \frac{1}{\eta} \left(\frac{V_s}{c} \right) eBR \\ = 460 \times \frac{1}{\eta} \left(\frac{V_s}{10^4 \text{ km/s}} \right) \left(\frac{B}{10\mu G} \right) \left(\frac{R}{10 \text{ pc}} \right) \text{ TeV} \\ \text{maximum energy = Velocity x B filed x Region size} \end{bmatrix}$$

Non-thermal hard X-rays from Young Supernova Remnants

Non-thermal hard X-rays from Young Supernova Remnants

Q: Connection between Soft X-ray and Hard X-ray (Between Heating and Acceleration)

Suzaku - Initial Results

- SN 1006
- Un-identified HESS TeV sources
- RXJ1713-3946
- Galactic Diffuse Emission, near GC
 - Newly discovered SNRs

SN1006

A map of line X-rays of He-like and H-like Oxygen

O VII line band

A map of non-thermal X-rays

3 - 5 keV band

A. Bamba et al. 2006

Thermal Plasma vs Non-thermal Emission

Thermal Plasma vs Non-thermal Emission

Thermal Plasma vs Non-thermal Emission

Unidentified TeV sources

Only 5 sources, out of 22, have firm identification.

Galactic Longitude (°)

HESS collaboration, 2005/2006

HESS J1616-508

2.0-10.0 keV

No bright X-ray source. Maybe electrons, which can be responsible for X-rays, already died out, and TeV is emitted from protons? \rightarrow Old SNR?

H.Matsumoto et al. 2006

HESS J1804-216

HESS J1804-216 XIS image and Spectra

Suzaku discovered the possible counterpart ! The spectrum is very hard and strongly absorbed.

A. Bamba et al. 2006

RXJ1713.7-3946

• Brightest Non-thermal SNR in the sky, both in X-ray and TeV gamma-ray

[Synchrotron cutoff]

$$\epsilon_0 = 2.0 \times \left(\frac{V}{2000 \text{ km/s}}\right)^2 \times \eta^{-1} keV$$
 independent of B

Observation

Results

First reliable detection up to 40 keV, with a signature of break at \sim 15 keV.

Galactic Diffuse Emission, near GC

Fe I Ka (6.4 keV) Chandra GC survey

Suzaku Fe-K edge

Embedded in MC Likely fluorescence by hard X-rays from a past active SMBH (Koyama 1994)

Molecular Cloud NRO CS J=1-0 20 km/s < v < 30 km/s (Tsuboi et al. 1999)

Diffuse VHE γ-rays HESS (Aharonian et al. 2006)

VHE proton bomberment?

Galactic Diffuse Emission, near GC

XIS FOV Green: Finished Red: Scheduled

6.4 keV diffuse emission is clearly resolved.

Koyama & the GC team, 2006

Power of Suzaku : Center Energy can be determined with an accuracy of a few eV (systematics ~ 5 eV)

Power of Suzaku : Center Energy can be determined with an accuracy of a few eV (systematics $\sim 5 \text{ eV}$)

Power of Suzaku : Center Energy can be determined with an accuracy of a few eV (systematics $\sim 5 \text{ eV}$)

Power of Suzaku : Center Energy can be determined with an accuracy of a few eV (systematics $\sim 5 \text{ eV}$)

Energy (keV)

Koyama & the GC team, 2006

He-like Fe Kα =6679 (+1.3-0.9) eV:
 Close to 6685eV, expected from Collisional excitation rather than Electron capture (6666 eV)
 Similar values of ~6.5 keV are derived for Ionization Temperature (He-/H-like Kα) and Electron Temperature (Kβ/Kα)

New Sources in the Sgr B & C regions from "Map of Line X-rays"

Koyama & the GC team, 2006

Summary

- Power of Suzaku
 - Low background and High Resolution of the XIS
 - Low background and Small FOV of the HXD/PIN
- Especially suitable for the study of diffuse sources.
- Suzaku has already discovered 6 new sources in the Sgr B & C regions.
- With Suzaku, we will be able to study the origin of the non-thermal emission and its connection with thermal plasma

NeXT Mission

Based on the proposal 2005-Oct, "Completion of pre-phase A" approved Waiting for the transition to Phase A/B

Launch 2012-2013

inclination 31deg altitude 550 km weight 1.7t

NeXT Mission

Based on the proposal 2005-Oct, "Completion of pre-phase A" approved Waiting for the transition to Phase A/B

Launch 2012-2013

- First Hard X-ray Imaging Observation (10 keV - 80 keV)
- Wide band observation (0.3 keV 300 keV)
- High Resolution X-ray observation of Diffuse Sources

inclination 31deg altitude 550 km weight 1.7t

NeXT Mission

Based on the proposal 2005-Oct, "Completion of pre-phase A" approved Waiting for the transition to Phase A/B

Launch 2012-2013

- First Hard X-ray Imaging Observation (10 keV 80 keV)
- Wide band observation (0.3 keV 300 keV)
- High Resolution X-ray observation of Diffuse Sources

inclination 31deg altitude 550 km weight 1.7t

Center Energy can be determined with an accuracy of a few eV (systematics ~ 5 eV)

Energy (keV)

Center Energy	Identification		Width	Intensity
(eV)	Line	Energy (eV)	(eV)	$(\text{photons s}^{-1} \text{ cm}^{-2})$
$1858.5^{+0.4}_{-1.2}$	Si XIII K α	1839.4 - 1864.9	16	$2.56^{+0.06}_{-0.07} imes10^{-3}$
$2004.4^{+1.7}_{-2.2}$	Si XIV K α	2005.5	24	$9.13^{+0.20}_{-0.38} imes10^{-4}$
$2182.1^{+2.5}_{-4.2}$	Si XIII K β	2182.6	23	$3.31^{+0.25}_{-0.08} imes10^{-4}$
$2301.0\substack{+3.5\\-4.2}$	S I [†] K α		$0 \;({ m fixed})$	$1.44^{+0.07}_{-0.20} imes10^{-5}$
$2380.7\substack{+2.5\\-2.0}$	Si XIV K β	2376.3	0 (fixed)	$2.23^{+0.10}_{-0.17} imes10^{-4}$
$2459.1\substack{+0.7\\-0.6}$	S XV K α	$2430.3\!-\!\!2460.5$	20	$1.25^{+0.02}_{-0.02} imes10^{-3}$
$2622.4^{+3.0}_{-2.7}$	S XVI K α	2621.6	31	$2.15^{+0.06}_{-0.13} imes10^{-4}$
$2870.9^{+4.1}_{-6.7}$	S XV K β	2870	0 (fixed	$7.96^{+0.40}_{-0.94} imes10^{-5}$
$2971.1^{+7.3}_{-4.9}$	Ar I [†] K α		$0 \;({\rm fixed})$	$4.32^{+0.72}_{-0.42} imes10^{-5}$
$3130.2^{+2.1}_{-1.4}$	Ar XVII K α	$3104.0\!-\!3139.5$	33	$2.48^{+0.05}_{-0.05} imes10^{-4}$
$3315.6^{+9.3}_{-6.3}$	Ar XVIII K α	3321.3	$0 \;({ m fixed})$	$3.17^{+0.40}_{-0.48} imes10^{-5}$
3696.8^{+15}_{-13}	Ar XVII K β	3690	0 (fixed)	$1.83^{+0.29}_{-0.42} imes10^{-5}$
$3897.4^{+3.8}_{-3.5}$	Ca XIX K α	$3861.1 {-} 3902.2$	14	$5.96^{+0.43}_{-0.28} imes10^{-5}$
4112.9^{+13}_{-12}	Ca XX K α	4104.9	$0 \;({ m fixed})$	$1.37^{+0.34}_{-0.28} imes10^{-5}$
$6408.8\substack{+0.8\\-1.5}$	Fe I † K α		36	$2.29^{+0.04}_{-0.03} imes10^{-4}$
$6678.7^{+1.3}_{-0.9}$	Fe XXV K α	$6636.4 {-} 6700.2$	38	$2.57^{+0.03}_{-0.03} imes10^{-4}$
$6969.5\substack{+2.8\\-2.1}$	Fe XXVI K α	6965.7	17	$8.37^{+0.28}_{-0.27} imes10^{-5}$
7765_{-23}^{+44}	Ni XXVII K α	7735 - 7805	$0 \;({ m fixed})$	$9.87^{+3.11}_{-2.86} imes10^{-6}$
7855°	Fe XXV K β	7881	0 (fixed)	$2.67^{+0.36}_{-0.26} imes10^{-5}$
Intrinsic line				
$5899.6\substack{+1.7\-0.4}$	Mn I K α	5895.1	34	
$6491.1_{-1.6}^{+2.5}$	Mn I K β	6490.4	37	
$7486.6^{+4.5}_{-3.2}$	Ni I K α	7472.4	25	

Center Energy can be determined with an accuracy of a few eV (systematics ~ 5 eV)

The errors are at 90% confidence level.

 † or low ionization state

 a fixed to Fe XXVI K α line energy +90

Ionization Temperature (He-/H-like K α) and Electron Temperature (K β /K α)